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Abstract

Lightweight structures, consisted of special composite material systems like sandwich plates, are often used in aerospace

or naval engineering. In composite sandwich plates, the intermediate core is usually made of cellular structures, e.g.

honeycomb micro-frames, reinforcing static and dynamic properties of these plates. Here, a new non-asymptotic

continuum model of honeycomb lattice-type plates is shown and applied to the analysis of dynamic problems. The general

formulation of the model for periodic lattice-type plates of an arbitrary lay-out was presented by Cielecka and Jędrysiak

[Journal of Theoretical and Applied Mechanics 40 (2002) 23–46]. This model, partly based on the tolerance averaging

method developed for periodic composite solids by Woźniak and Wierzbicki [Averaging techniques in thermomechanics of

composite solids, Wydawnictwo Politechniki Częstochowskiej, Częstochowa, 2000], takes into account the effect of the

length microstructure size on the dynamic plate behaviour. The shown method leads to the model equations describing the

above effect for honeycomb lattice-type plates. These equations have the form similar to equations for isotropic cases. The

dynamic analysis of such plates exemplifies this effect, which is significant and cannot be neglected. The physical

correctness of the obtained results is also discussed.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

In this paper, the formulation and application of a non-asymptotic continuum model to the study of
dynamics of linear-elastic lattice-type plates having a honeycomb structure in 0x1x2-plane (cf. Fig. 1) are
shown. The presented model is a special case of the model derived by Cielecka and Jędrysiak [1] for lattice-type
plates having a periodic structure of an arbitrary lay-out. Plates of this kind consist of a very large number of
small cells separated by prismatic, slender beams in plane 0x1x2. The length dimensions of the cell are assumed
to be small in comparison with the minimum characteristic length dimension of the whole plate. The effect of
the cell length size, which is related to the periodic structure of the lattice-type plate and also called also the

length-scale effect, is very interesting to describe in the dynamic behaviour of such plate.
The mass distribution of this plate is assumed in the form of concentrated masses, and inertia moments

assigned to every nodal joint of a lattice. By this means, the considered lattice-type plate is represented by a
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

a, b superscripts, which run over 1; . . . ; n
A superscripts, which run over 1; . . . ;N
A;E;K;W overall energy, the strain energy, the

kinetic energy, the external loading work
of the lattice-type plate, respectively

b, h width, the mean height of beams
BA prismatic linear-elastic beams in the

undeformed representative element, with
axes situated on the plane 0x1x2,
A ¼ 1; . . . ;N; cf. Figs. 2 and 3

EA Young’s modulus of beam BA

fa(z,t) resultant external force applied to the
joint ja in a cell with a centre zAL

FA cross-section area of beam BA

GA Kirchhoff’s (shear) modulus of beam BA

haa, gaa systems of numbers called shape para-
meters, describing forms of oscillations in
the periodicity cell D

i, j, k, l subscripts, which run over 1, 2, related to
the system 0x1x2

IA moment of inertia of beam BA

IA
o central moment of inertia of beam BA

ja rigid joints with centres at points
x ¼ xa ¼ ðxa

1;x
a
2Þ, connecting beams BA,

a ¼ 1,.., n; cf. Figs. 2 and 3
Ja second-order tensor of the rotational

moment of inertia of joint ja

k wavenumber, k ¼ 2p/L
K, L tensors with components K.ij, Lkl. (dots

are the possible sequences of subscripts)
K�L, K �L, K:L objects having components

K.ijLkl., K.ijLjk., K.ijLij., respectively
l the microstructure length parameter—

characteristic length of cell D, defined as
the square root of microstructure length
parameter—the area |D| of the cell, l �ffiffiffiffiffiffi
jDj
p

and assumed that l/Lmin51
Lmin smallest characteristic length dimension

of X, cf. Fig. 1
L span of the honeycomb lattice-type plate

along x ¼ x1 axis
L set of all periodically situated points on

0x1x2 being centres of all mutually
disjoined cells constituting the region X

ma(z,t) resultant external couples applied to the
joint ja in a cell with a centre zA L

Ma total concentrated mass assigned to
joint ja

n number of rigid joints in a representative
element

N number of prismatic linear-elastic beams
in a representative element

Na number of beams for which a rigid joint
ja is the end

PL(T) set of periodic-like functions in the
problem under consideration

PLm(T) set of oscillating functions with a positive
valued periodic weight-function m in the
problem under consideration

q dimensionless wavenumber
Qa, Ra extra kinematic unknowns called the

internal kinematic variables, related to
the deflection and the rotations, respec-
tively

sA span of beam BA, cf. Figs. 2 and 3
SV(T) set of slowly varying functions in the

problem under consideration
t time coordinate
tA, nA unit vectors assigned to every beam BA,

cf. Fig. 2
T ¼ ðF; eð�ÞÞ pair called the tolerance system
va, ra fluctuating parts of deflection and rota-

tions, respectively
V new internal variable replacing the vari-

able R1

wa(z,t) deflection vector of the joint ja, belonging
to a cell with the centre z, zAL, at an
arbitrary instant t

W, U averaging parts of the deflection and
rotations, called the macrodeflection and
macrorotations, respectively

x ¼ (x1,x2) points on the 0x1x2-plane
0x1x2 Cartesian orthogonal coordinate system

on the plane
a, b superscripts, which run over 1,y,n–1
e( � ) mapping F 3 f ! ef R

þ

~eA; kA; ~kA strain components related to BA

ef a constant tolerance parameter for a
continuous real valued function f defined
on X̄

sA strain energy assigned to beam BA

rA mass density of beam BA

nA Poisson’s ratio of beam BA

qi partial differentiation of xi, also denoted
by ( � ),i

qX boundary of a periodic structure, cf.
Fig. 1
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Fig. 1. A fragment of periodic lattice-type plate having honeycomb structure with the periodicity cell D, the interior region of the plate X,
the boundary of the plate qX, the smallest characteristic length dimension of the plate Lmin.

ua(z,t) rotation vector of the joint ja, belonging
to a cell with the centre z, zAL, at an
arbitrary instant t

j angle denoted in Fig. 3
o� lower (‘‘fundamental’’) free vibration

frequency
o+ higher free vibration frequency, related

to a periodic plate structure
O�, O+ non-dimensional frequency parameters

for a lower and a higher free vibration
frequency, respectively

D parallelogram on the 0x1x2-plane consti-
tuting a cell representative of a whole
periodic lattice-type plate, cf. Fig. 1

X region on 0x1x2-plane being an interior
of a union of all closures of repeated
cells, cf. Fig. 1

XK gradient of arbitrary smooth field K( � )
(with components qiKkl.)

X �K divergence of the field K( � ) (with com-
ponents qiKij.)
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certain plane periodic system of mutually interacted rigid joints. A review of discrete models describing
dynamics of periodic systems of concentrated masses was discussed by Brillouin [2], where the effect of the cell
length size was shown as additional higher-order frequencies. However, the direct approach to dynamics of
periodic systems consisting of a very large number of rigid bodies meets computational difficulties (e.g.
necessity of solving a large number of differential equations). Hence, in order to simplify the analysis of special
problems, different averaged continuum models were proposed. It can be mentioned those, related to the
frame-type lattice structures, described by governing equations with couple stresses and summarized by
Woźniak [3]; models for cellular media, e.g. Gibson et al. [4]. Some in-plane problems were analysed by
Lewiński [5–8], where Rogula–Kunin’s approach (cf. Ref. [9]) was applied as a tool of modelling to hexagonal
gridworks.

A typical mathematical modelling approach for periodic lattice-type structures is based on the asymptotic
procedures of the homogenization theory, cf. Refs. [10,11], where a small parameter describing the size of the
periodic cell is introduced. Continuum models using asymptotic homogenization methods were applied e.g. by
Cioranescu and Saint Paulin [12,13]. Using these approaches, the periodic solids or structures are
approximated by certain equivalent homogeneous media. The obtained so-called effective modulae describe
the averaged properties and the overall behaviour of the medium can be analysed. Unfortunately, in
homogenization methods, all length dimensions of the cell tend to zero and a number of the cells tends to
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infinity, hence derived model equations neglect the effect of the cell size on the global behaviour of periodic
systems. Thus many interesting problems cannot be investigated; for example, those related to the effects of
the cell size appeared in the dynamics of composite materials, e.g. higher-order vibrations related to periodic
structure.

Certain non-asymptotic approaches to analyse periodic structures were proposed e.g. by Mead [14], Engels
and Meirovitch [15]. In Ref. [14], a general theory of harmonic wave propagation in periodic systems of one or
two dimensions was shown. Equations of motion formulated for a periodic element within a multi-coupled
periodic system describe the motion in the element, which was qualified by a set of generalized coordinates,
associated with a real wave mode. The combined analysis, based on the application of this theory to periodic
structures and the finite element model to the unit cell, was presented for the two-dimensional periodic cellular
structures e.g. by Langley et al. [16] (to beam grillages) and by Ruzzene et al. [17] (to grids with hexagonal
cells). In these works, the characteristics of wave propagation for those structures were investigated. However,
also in the aforementioned papers, problems of the length-scale effect related to periodic structure, e.g. higher-
order vibrations, were not analysed. Although, it seems that employing the above approaches, these problems
can be investigated.

In the last decade, an alternative non-asymptotic modelling method was proposed and applied to the
analysis of dynamic phenomena for both discrete and continuous periodic structures and also periodic
composites in a series of papers: Baron [18], Cielecka [19], Cielecka et al. [20,21], Cielecka and Jędrysiak [1],
Jędrysiak [22,23], Mazur-Śniady et al. [24], Michalak [25], Wierzbicki and Woźniak [26] and others. The
aforementioned approach was called the tolerance averaging method and summarized in the book by Woźniak
and Wierzbicki [27]. In the modelling procedure of this averaging technique, the concept of tolerance related
to the accuracy of the performed calculations is introduced. For vibrations and wave propagation problems of
periodic solids, this concept leads to additional unknowns, usually called kinematic internal variables,
describing together with the averaged displacement fields the dynamic behaviour of the solid [27]. The main
advantage of the tolerance averaging method is the wide variety of special problems of the overall behaviour
of periodic composite media, which can be analysed, e.g. the length-scale effects.

The main aim of this contribution is to investigate the dynamic behaviour of a periodic lattice-type plate
having a honeycomb structure, taking into account the length-scale effect on vibrations of the plate. On
account of the mentioned above problem, the governing equations of the new non-asymptotic model of
dynamics for periodic lattice-type plates will be applied, which were derived in Ref. [1]. These equations have
been obtained by means of the modelling procedure being a certain adaptation of the tolerance averaging
method [27] to these plates. For periodic lattice-type plates, this procedure leads to equations with constant
coefficients, which involve additional kinematic internal variables [1,27]. These additional kinematic
unknowns are treated as certain amplitudes of displacement fluctuations in the periodicity cell. It will be
shown that the non-asymptotic model equations for honeycomb-type plates have the form similar to equations
for isotropic cases, i.e. these equations have isotropic coefficients, cf. Ref. [21]. Thus, the overall response of a
honeycomb structure of the lattice-type plate is isotropic, similarly as in honeycomb cellular media, cf. Ref. [7].
In order to make the paper self-contained, the foundations of the tolerance averaging method and the internal
variable model, cf. Ref. [1], are outlined in the subsequent section. The obtained continuum model takes into
account the length-scale effect on the global behaviour of plate under consideration and gives the possibility of
analysing additional higher-order vibrations related to a periodic plate structure. As an application of the
model, the additional higher-order free vibration frequencies of the plate band with honeycomb lattice
structure will be derived at an example. The proposed model is useful to the analysis of long wave propagation
problems. Moreover, a comparison between obtained results and the ‘‘exact’’ solutions, calculated similar to
Ref. [2], will be shown and treated as a certain physical correctness of the model.

2. Modelling approach

2.1. Preliminaries

Denote by i, j, k, l subscripts, which run over 1, 2 and are related to Cartesian orthogonal coordinates x1, x2

in the 0x1x2-plane. Let indices a, b and A run over 1,y, n and 1,y, N, respectively; indices a, b take the values
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1,y, n�1. Summation convention holds for all the aforementioned indices unless otherwise stated. Points on
the 0x1x2-plane are denoted by x ¼ (x1, x2) and t is the time coordinate. For tensors K, L (with components
K.ij, Lkl.—dots are the possible sequences of subscripts) by K�L, K �L and K:L, objects having components
K.ijLkl., K.ijLjk. and K.ijLij., respectively, will be defined. The gradient of arbitrary smooth field K( � ) is denoted
by XK (with components qiKkl.). Symbol X �K is the divergence of the field K( � ) (with components qiKij.)
and qi is the partial differentiation of xi, also denoted by ( � ),i.

By D denote a parallelogram on the 0x1x2-plane constituting a cell representative of a whole periodic lattice-
type plate, cf. Fig. 1. It can be observed that D contains the representative structural element for the plate. In
general, this element can include one, two or several periodicity cells. The choice of this element is not unique
and is dependent on the class of motions, which are investigated. The undeformed representative element is
assumed to be made of N prismatic linear-elastic beams BA (cf. Fig. 2), A ¼ 1,y, N, with axes situated on the
plane 0x1x2. For the smallest cell of the honeycomb-type plate, it is N ¼ 3, cf. Figs. 1 and 3. The beams BA in
the representative cell are interconnected by rigid joints ja (cf. Fig. 2), a ¼ 1,y, n, with centres at points
x ¼ xa ¼ ðxa

1; x
a
2Þ on the plane 0x1x2. The length dimension in this plane of every rigid joint is assumed to be

negligibly small as compared with the spans of interconnecting beams. Moreover, the plane 0x1x2 is a
symmetry plane both for every beam and every rigid joint, treated as certain spatial (three-dimensional)
elements. It is assumed that the beams are bent and twisted in planes perpendicular to 0x1x2-plane and the
rigid joints rotate in these planes; centres of joints displace in the direction normal to 0x1x2-plane.
ϕa
1

s A

B A

t A
nA

jb

ja

x1

x2

O

ϕb
2

ϕb
1

ϕa
2

Fig. 2. Unit vectors nA, tA and rigid joints ja, jb assigned to a beam BA.
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Fig. 3. The periodicity cell of honeycomb lattice-type plate.
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Let X denote a region on 0x1x2-plane being an interior of a union of all closures of repeated cells, cf. Fig. 1.
It should be emphasized that the periodic structure of the whole lattice-type plate can be disturbed in the
structural elements situated near the boundary qX (cf. Fig. 1) of X. These considerations are related to the so-
called bulk region and therefore the effect of a boundary layer is ignored. Denote by Lmin the smallest
characteristic length dimension of X and by l the characteristic length of cell D, which is defined as the square
root of the area |D| of cell, l �

ffiffiffiffiffiffi
jDj
p

. It will be assumed that l/Lmin51. Hence, the length l will be called the

microstructure length parameter of the lattice-type plate.
Properties of beam BA are described by the flexural stiffness EAIA, the torsional stiffness GAIA

o , the span sA,
the mass density rA, the Poisson’s ratio nA and the cross-section area FA. It is assumed that the mass of beam
BA is equally distributed at the beam ends (joints) as two equal concentrated masses. Moreover, the rotational
moment of inertia of joint ja is represented by the second-order tensor Ja. Let unit vectors tA, nA be assigned to
every beam BA, cf. Fig. 2. In order to describe a kinetic energy of a beam by velocities of deflections and
rotations of its ends [1], the total concentrated mass Ma assigned to joint ja is given by

Ma ¼
1

2

XNa

A¼1

rAFAsA, (1)

and the tensor Ja of the rotational moment of inertia of joint ja can be taken in the form [1]

Ja ¼
1

2

XNa

A¼1

rAsA½IAðnA � nAÞ þ IA
0 ðt

A � tAÞ�, (2)

where Na is the number of beams ending in a rigid joint ja. For honeycomb plates it is Na ¼ 3.
Let L be a set of all periodically situated points on 0x1x2 being centres of all mutually disjoined cells

constituting the region X. Then, let a deflection and rotation vector of the joint ja, belonging to a cell with the
centre z, zAL, at an arbitrary instant t, be denoted by wa(z,t) and ua(z,t), respectively. All external loads are
assumed to be applied exclusively to the centres of rigid joints. The resultant external force and external
couples applied to the joint ja in a cell with a centre zAL are denoted by fa(z,t) and ma(z,t), respectively. It is
also assumed that every beam BA, interconnecting rigid joints ja and jb, is considered in the framework of the
Euler–Bernoulli beam theory. The strain components related to BA will be taken in the following form (no
summation over A in Eqs. (3)–(5)):

~eA � ðwb � waÞ=sA þ 0:5ðua þ ubÞ � nA; kA � ðub � uaÞ � nA; ~kA � ðub � uaÞ � tA. (3)

Using notations

~L
A
� 12EAIAðsAÞ

�1; KA � EAIAðsAÞ
�1; ~K

A
� GAIA

o ðs
AÞ
�1, (4)

the strain energy sA assigned to beam BA is equal to

sA ¼ 1
2
½ ~L

A
ð~eAÞ

2
þ KAðkAÞ

2
þ ~K

A
ð ~kAÞ

2
�. (5)

It is necessary to emphasize that all denotations and formulae mentioned above are related to an arbitrary
but fixed repeated element of the periodic lattice-type plate (except some elements situated near boundary qX
of X).

Introduce the Hamiltonian A ¼ E�K�W, where

E ¼
1

2

X
z2L

XN

A¼1

~L
A
~eAðz; tÞ
� �2

þ KA kAðz; tÞ
� �2

þ ~K
A
~kAðz; tÞ
� �2n o

,

K ¼
1

2

X
z2L

Xn

a¼1

fMa½ _waðz; tÞ�2 þ ½ _uaðz; tÞ � _uaðz; tÞ� : Jag,

W ¼
X
z2L

Xn

a¼1

½f a
ðz; tÞ waðz; tÞ þmaðz; tÞ � uaðz; tÞ�. ð6Þ
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Taking into account formulae (3) from the principle of stationary action, the system of equations for wa(z,t),
ua(z,t), zAL, a ¼ 1; . . . ; n, i ¼ 1, 2, representing a discrete model of a periodic lattice-type plate, can be
derived. However, these equations are not convenient for investigations of the plate overall dynamic
behaviour because the number of points L is very large and therefore relations (3),(4), (6) together with
assumptions formulated in the subsequent section will be treated only as a basis for deriving the governing
equations of a continuum model of the lattice-type plate under consideration.
2.2. The tolerance averaging method

Below, some concepts related to the tolerance averaging method and defined in Ref. [27] will be reminded.
A concept of a tolerance is introduced as the binary relation (denoted by ‘‘E’’) defined on a certain non-

empty set A, which is reflexive, symmetric and not transitive. Assuming that A is a set of real numbers R with a
unit measure and e is a positive number determining the accuracy of computations of elements A, for every a1,
a2A A it holds a1�

e
a23ja1 � a2jpe, where e is a constant tolerance parameter.

Denote by F the set of all continuous real valued functions f defined on X̄�X[qX (and their derivatives) in
the problem under consideration, which values are determined within the known tolerance and satisfying the
following condition: for every points x, y 2 X̄, it holds f ðxÞ �

ef

f ðyÞ3jf ðxÞ � f ðyÞjpef . It is a domain of the
mapping F 3 f ! ef 2 Rþ, denoted by e( � ). The pair T ¼ ðF; eð�ÞÞ is called the tolerance system, cf. Ref. [27].

For the known certain tolerance system T ¼ ðF, e( � )) and a cell D the concepts of a slowly varying function
and a periodic-like function are introduced. Let F 2 F be a continuous function defined on X̄. The function F
will be called a slowly varying function, if for every points x; y 2 X̄ it holds the following condition
jjx� yjjpl ) FðxÞ �

eF
FðyÞ, where ||x–y|| is a distance between points x, y. If F with all derivatives (also time

derivatives) are slowly varying functions it will be written as FASV(T).
Let f 2 F be a continuous function and for every xAX, a symbol fx be a certain continuous periodic

function. A continuous function f 2 F will be called a periodic-like function if for every xAX such a fx 2 F

exists that for every yAX it holds jjx� yjjpl ) fðyÞ�
ef
fxðyÞ. If derivatives of f hold similar conditions, it will

be written as fAPL(T). The function fx is called a periodic approximation of f. Moreover, if f is a periodic-
like function and the condition hmfiðxÞ �

e
0 is satisfied for every xAX, where m is a positive valued periodic

function, f will be called an oscillating function, fAPLm(T).
The above concepts with lemmas formulated and proved in Ref. [27] are the mathematical background of

the tolerance averaging method, applied to analyse higher-order vibrations for continuous periodic structures
and composites [18,22–26]. In several papers, the tolerance averaging method has been adapted to
dynamics of discrete periodic structures such as plane periodic lattice-type structures [19], two-dimensional
periodic cellular media [20,21] and periodic lattice-type plates of an arbitrary lay-out [1]. In this paper, the
modelling of honeycomb lattice-type plates and an analysis of higher-order vibrations of the plates will be
proposed.
2.3. The tolerance averaging model

Now, a passage from the discrete model of the periodic lattice-type plate to a certain non-asymptotic
continuum model, based on the tolerance averaging will be presented [27].

The main assumption of the tolerance averaging is the Conformability Hypothesis. It is assumed that the
deflection wa(z,t) and the rotations ua(z,t) of the rigid joint ja in a cell with the centre z, zAL, have to be
conformable to a periodic structure of the lattice-type plate, i.e. these are periodic-like functions for any time t,
wa( � ,t), ua( � ,t)APL(T).

In order to derive the governing equations of the non-asymptotic continuum model [1], the applied
modelling procedure can be shown in five steps.
(1)
 The plate deflection wa( � ,t) and rotations ua( � ,t) are decomposed:

waðz; tÞ ¼W ðxa; tÞ þ vaðxa; tÞ; uaðz; tÞ ¼ Uðxa; tÞ þ raðxa; tÞ; z 2L, (7)
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where W and UASV(T) are averaging parts of the deflection and rotations, called the macrodeflection and
macrorotations, respectively, and defined as

W ðz; tÞ ¼M�1Mawaðz; tÞ; Uðz; tÞ ¼ J�1 � uaðz; tÞ � Ja; z 2L

with denotations M ¼
Pn

a¼1M
a; J ¼

Pn
a¼1J

a; functions va, raAPLm(T) are the fluctuating parts of

deflection and rotations, which hold the normalizing conditions Ma vaðz; tÞ ¼ 0; Ja � raðz; tÞ ¼ 0; z 2L; in
dynamic problems. Because these considerations are related to the bulk region, the effect of a boundary
layer in Eq. (7) is ignored.
(2)
 A certain periodic problem on the periodicity cell D is formulated for periodic functions va
x and ra

x, being
local periodic approximations of the fluctuations of deflection va and rotations ra at xAX. Solutions to this
problem are being looked for in the form of finite series:

va ffi va
x ’ lhaaQaðxa; tÞ; ra ffi ra

x ’ lgaa � Raðxa; tÞ, (8)

where haa, gaa are systems of numbers, also called shape parameters, satisfying conditions:

Xn

a¼1

Mahaa
¼ 0;

Xn

a¼1

Ja � gaa ¼ 0, (9)

a ¼ 1; . . . ; n� 1; a ¼ 1; . . . ; n; and l is the given a priori microstructure length parameter of the periodic
lattice-type plate under consideration. It should be emphasized that the systems haa, gaa are not uniquely
determined but their choice will be irrelevant, and functions Qa and Ra are extra kinematic unknowns.
Because functions va

xð�; tÞ and ra
xð�; tÞ are periodic approximations of vað�; tÞ and ra( � ,t) in D(x) and va

xð�; tÞ,
ra( � ,t)APLm(T), then from Eq. (8) it follows that Qa( � ,t), Ra( � ,t)ASV(T).

It has to be emphasized that the research of solutions to the periodic problem on the periodicity cell D in
the form (8) in the framework of the tolerance averaging method is different than in the well-known
methods of the asymptotic homogenization, where these solutions are looked for in the form of power
series of a small parameter describing the length size of the periodicity cell.

In the proposed model, the shape parameters haa, gaa are interpreted as forms of oscillations in the
periodicity cell D, while the additional unknowns Qa, Ra are treated as amplitudes of these oscillations, i.e.
of the fluctuations of deflection va and rotations ra.
(3)
 Finite differences of the basic unknowns W( � ,t), U( � ,t), Qa( � ,t), Ra( � ,t), being slowly varying functions
within every cell D, are approximated by the values of their appropriate derivatives and increments of these
unknowns inside the cell are neglected in calculation of averages over this cell. Moreover, finite sums over
L in Eq. (6) are approximated by the integrals over X.
Defining h̄

Aa
� hba

� haa, ḡAa � 0:5 ðgaa þ gbaÞ, ĝAa
� gba � gaa, lA

� l=sA, and setting

Wðx; tÞ � rW ðx; tÞ þ e : Uðx; tÞ; x 2 X,

where e stands for the Ricci symbol, and using the aforementioned approximations, formulae (3) take the
following form (no summation over A!)

~eAðz; tÞ ffi tA �Wðz; tÞ þ lAh̄
Aa

Qaðz; tÞ þ l nA � ḡAa � Raðz; tÞ,

kAðz; tÞ ffi sAðnA � tAÞ : rUðz; tÞ þ l nA � ĝ
Aa
� Raðz; tÞ,

~kAðz; tÞ ffi sAðtA � tAÞ : rUðz; tÞ þ l tA � ĝAa
� Raðz; tÞ; z 2L. ð10Þ

It is visible that the derived strain components for the tolerance averaging model involve spatial
derivatives of averaging parts of the deflection W(z,t) and the rotations U(z,t), but do not involve
derivatives of the extra kinematic unknowns Qa(z,t) and Ra(z,t), describing fluctuating parts of a
deflection and rotations in an arbitrary but fixed cell D of the periodic lattice-type plates under
consideration.

Substituting the right-hand sides of Eqs. (10) and (7)-(8) into Eq. (6)1,2 the strain and kinetic energy
densities obtained are Ē � E=jDj, and K̄ �K=jDj, respectively, as the quadratic symmetric and positive-
definite forms Ē � ĒðW;rU;Qa;RaÞ, K̄ � K̄ð _W ; _U; _Q

a
; _R

a
Þ, where the cell area is defined by |D|. The

exact integral formulae can be found in Ref. [1] and these are reminded in Appendix A.



ARTICLE IN PRESS
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(4)
 Regarding the external loading on the periodic lattice-type plate, the condition is imposed, namely, it is
assumed that continuous slowly varying functions f( � ,t), fa( � ,t), m( � ,t), ma( � ,t) (defined on X for every t)
exist, such that the conditions

f ðz; tÞ ¼ Dj j�1
Xn

a¼1

f a
ðz; tÞ; f a

ðz; tÞ ¼ Dj j�1
Xn

a¼1

f a
ðz; tÞ haa,

mðz; tÞ ¼ h�1 Dj j�1
Xn

a¼1

maðz; tÞ; maðz; tÞ ¼ h�1 Dj j�1
Xn

a¼1

gaa �maðz; tÞ, ð11Þ

hold for every zAL; where h stands for a mean height of the beams in the direction normal to 0x1x2-plane.
Thus, from (6)3 the integral form of the density of the external loading work W̄ �W=jDj is obtained, cf.
Ref. [1]; Appendix A.
(5)
 At last, from the Hamiltonian for the lattice-type periodic plates shown in Ref. [1] in the integral form and
reminded here in Appendix A, employing the principle of stationary action the after-mentioned equations
for the macrodeflection W, the macrorotations U and the extra kinematic unknowns Qa, Ra (a ¼ 1,y,
n�1) together with the constitutive equations are derived [1]:
(i) Equations of motion

r � P� m €W þ f ¼ 0,

r �Mþ e : P� h2v � €Uþ hm ¼ 0, ð12aÞ

(ii) Dynamic evolution equations

l2mab €Q
b
þ Sa � lf a

¼ 0,

h2l2vab � €R
b
þHa � hlma ¼ 0, ð12bÞ

(iii) Constitutive equations

P ¼
qĒ

qrW
; M ¼

qĒ
qrU

; Sa ¼
qĒ
qQa ; Ha ¼

qĒ
qRa , (12c)

where

m � Dj j�1
Xn

a¼1

Ma; mab � Dj j�1
Xn

a¼1

Mahaahab,

v � h�2 Dj j�1
Xn

a¼1

Ja; vab � h�2 Dj j�1
Xn

a¼1

gaa � Ja � gab.

These equations have to be satisfied for every t in the region X of 0x1x2 and represent a continuum
non-asymptotic model of the periodic lattice-type plate of an arbitrary lay-out. This continuum model
called the internal variable model [1] will be called further as the tolerance averaging model.
Eqs. (12a)–(12c) have physical sense for unknowns W, U, Qa, Ra being slowly varying functions for every t,
cf. Refs. [1,27], i.e.

W ð�; tÞ; Uð�; tÞ; Qað�; tÞ; Rað�; tÞ 2 SV ðTÞ. (13)

Hence, this model is useful to analyse long wave propagation problems, in which a typical wavelength is
sufficiently large comparing to the length size of the periodicity cell.

It should be emphasized that for the extra kinematic unknowns Qa, Ra the obtained ordinary differential
equation (12b) involve exclusively their time-derivatives, while the macrodeflection W and the macrorotations
U are governed by the partial differential equations (12a). Derived equations (12b) do not involve spatial
derivatives of unknowns Qa, Ra because they do not appear during calculations as a consequence of the
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assumed averaging approximations (see Section 2.3, p. 3). Hence, in general for Qa, Ra boundary conditions
cannot be formulated and that is why these are called internal kinematic variables.

For more detailed discussion of this model, the reader is referred to Ref. [1].

3. Governing equations for honeycomb lattice-type plates

In this section, the general equations of the tolerance averaging model (12a–c) will be applied to derive
governing equations for lattice-type plates having a honeycomb structure in 0x1x2-plane and it will be shown
that the equations take the form similar to equations of isotropic cases.

For honeycomb lattice-type plates, the smallest periodicity cell D can be fixed in the form shown in Fig. 1.
The cell (cf. Fig. 3) consists of three identical beams B1, B2, B3 and two identical rigid joints j1, j2, therefore
N ¼ 3 and n ¼ 2. All material and geometrical properties of beams are assumed to be constant (A ¼ 1, 2, 3),
i.e. a Young’s modulus EA

¼ E, a Kirchhoff’s modulus GA
¼ G, a Poisson’s ratio nA

¼ n, a mass density
rA
¼ r and a length of beam sA

¼ s, an area of beam cross-section FA
¼ F and moments of inertia of beam

cross section: IA
¼ I, IA

o ¼ Io. The area |D| of the cell and the square of the microstructure length parameter l

are identical: jDj ¼ l2 ¼ 3
ffiffiffi
3
p

s2=2. The assumptions mentioned above indicate that stiffnesses given by Eq. (4)
are the same and equal to

~L
A
¼ ~L ¼ 12EIs�1; KA ¼ K ¼ EIs�1; ~K

A
¼ ~K ¼ GIos�1,

concentrated masses Ma of joints (1) and terms of the tensor Ja (a ¼ 1, 2) of the rotational moment of inertia
(2) are also equal to

Ma ¼M ¼ 3
2
rFs; Ja

ij ¼ dijJ ¼
3
4
rsðI þ IoÞ; i; j ¼ 1; 2. (14)

Because n�1 ¼ 1, it will be dealt with one internal kinematic variable Q�Q1 and one vector kinematic variable
R1. From Eq. (14) and the conditions (9) for shape parameters ha1, ga1, it follows that the parameters are
equal to

h11
¼ �h21

¼ 1; g11
ij ¼ �g21

ij ¼ 1; i; j ¼ 1; 2. (15)

Let us introduce the following denotations:

W � 3
2
~Ll�2; g � 12 ~Ls�2; k � 6ð ~K þ KÞl�2; Z � 3

2
ð ~K � KÞsl�3;

z � 3
8
Ks2l�2; ~z � 3

8
~Ks2l�2; m ¼ 2Ml�2; w ¼ 2Jh�2l�2:

(16)

After calculation of Eqs. (10) and (6), the constitutive equations for P ¼ [Pi], M ¼ [Mij] and S1, H1
¼ [Hi

1],
i, j ¼ 1, 2, given by the general formulae (12c), have after-mentioned forms

P ¼ AðrW þ e : UÞ; M ¼ C : rUþ l2B1 : R1;

S1 ¼ A11Q1; H1 ¼ l2B1 : rUþ l2A11
� R1;

(17)

where

Aij ¼ dijW; A11 ¼ g; A11
ij ¼ dijk,

Ciiii ¼ 3~zþ z; Ciijj ¼ Cijji ¼
~z� z; Cijij ¼

~zþ 3z; iaj,

B1
122 ¼ B1

221 ¼ B1
212 ¼ �B1

111 ¼ �Z cos 3j; B1
121 ¼ B1

211 ¼ B1
112 ¼ �B1

222 ¼ Z sin 3j,

and j is an angle denoted in Fig. 3. Now, instead of R1, a new internal variable V will be introduced, which is
defined as

V11 ¼ �V 22 ¼ R1
1 cos 3jþ R1

2 sin 3j; V12 ¼ V 21 ¼ R1
1 sin 3j� R1

2 cos 3j. (18)

Because the unknown R
1 is a slowly varying function, cf. Eq. (13), the new unknown V is also slowly

varying, V( � ,t)ASV(T). Taking into account the obtained constitutive equations (17), the introduced
new internal variable V (18), applying the general equations (12a,b), may be received after quite simple
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calculations, which result in the following system of equations:

Wðr � rÞW � m €W þ We : ðr �UÞ þ f ¼ 0,

We : rW þ We : ðe : UÞ þ 2ð~z� zÞrðr �UÞ þ ð~zþ 3zÞðr � rÞU� h2w €Uþ l2Zr � Vþ hm ¼ 0,

l2m €Qþ gQ� lf 1
¼ 0,

l2h2w €Vþ l2kVþ l2Z½rUþ rUT � 1 � ðr �UÞ� � lhm1 ¼ 0. (19)

Eqs. (19) with denotations (16) represent the tolerance averaging model for honeycomb lattice-type plates
under consideration. The basic unknowns of the model are the macrodeflection W, the macrorotation U and
the internal kinematic variables Q, V.

The above equations have constant coefficients and some of which involve the microstructure length
parameter l. Thus, Eqs. (19) describe the length-scale effect in dynamical problems of honeycomb lattice-type
plates and make it possible to investigate higher-order vibrations related to the periodic plate structure. The
main feature of these equations is their form, which is similar to equations of isotropic cases, because
coefficients in Eqs. (19) are independent of the angle j, i.e. these are isotropic, cf. Ref. [21]. Thus, the
dynamical response of lattice-type plates with the internal honeycomb structure is isotropic for unknowns: the
macrodeflection W, the macrorotation U, the internal kinematic variables Q and the new internal variables V,
defined by relations (18). It should be emphasized that Eqs. (19) can be applied in the analysis of long wave
propagation problems, what corresponds with the condition that all unknowns in this model have to be slowly
varying functions, cf. Eq. (13).

In order to evaluate obtained results, a certain continuous asymptotic model will be presented. The
governing equations of that model can be derived from the equations of the tolerance averaging model (12a–c)
by the asymptotic procedure, in which the microstructure length parameter l is scaled down. At the same time,
it is assumed that the length parameter h, being the mean height of beams, i.e. a dimension of the direction
normal to 0x1x2-plane, tends towards zero much faster than the parameter l, therefore h ¼ o(l). After applying
this procedure (cf. Ref. [1] and Appendix B), the following equation of motion is obtained:

ð~zþ 3zÞðr � rÞ : ðr � rÞW þ m €W � f ¼ 0, (20)

which represents an asymptotic model of the periodic lattice-type plate under consideration, called the local

model. The only unknown in this model is the macrodeflection W, which has to be a slowly varying function
for every t in the region X of 0x1x2.

4. Free vibrations of a simply supported lattice-type plate band with honeycomb structure

As an example, let us consider free vibrations of a honeycomb lattice-type plate band along x ¼ x1 axis,
which is simply supported on the opposite edges x ¼ 0 and x ¼ L. Hence, all loadings subjected to this plate
will be neglected, i.e. f ¼ f1 ¼ 0, m ¼ m

1
¼ 0, and the rotation F1 ¼ 0. Denoting F ¼ F2, V ¼ V12,

S ¼ V11 ¼ �V22, Eqs. (19) of the tolerance averaging model uncouple on the system of three equations:

WW ;11 � m €W þ WF;1 ¼ 0,

� WW ;1 þ ð
~zþ 3zÞF;11 � WF� h2w €Fþ l2ZV ;1 ¼ 0,

ZF;1 þ h2w €V þ kV ¼ 0, ð21Þ

and two independent equations

l2m €Qþ gQ ¼ 0; h2w €S þ kS ¼ 0. (22)

Solutions to Eq. (21) and (22) will be looked for in the form

W ðx; tÞ ¼ AW sin kx cos ot; Fðx; tÞ ¼ AF cos kx cos ot; V ðx; tÞ ¼ AV sin kx cos ot,

Qðx; tÞ ¼ AQ sin kx cosot; Sðx; tÞ ¼ AS sin kx cos ot, ð23Þ
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satisfying boundary conditions of the simply supported plate band, where o is a frequency of vibrations and
k ¼ 2p/L is a wavenumber.

Substituting the right-hand sides of Eq. (23)1,2,3 into Eqs. (21), the system of three linear algebraic equations
for AW, AF, AV is obtained. Non-trivial solutions to these equations can be derived, provided that the
determinant of the system is equal to zero. Then, the characteristic equation for the free vibration frequencies
derived from Eqs. (21) has the following form:

āo6 � b̄o4 þ c̄o2 � d̄ ¼ 0, (24)

where coefficients ā; b̄; c̄; d̄, using notations (16), are defined as

ā � h4mw2; b̄ � h2w mðWþ kÞ þ h2Wwþ mð3zþ ~zÞ
� �

k2
� �

; d̄ � W kð3zþ ~zÞ � l2Z2
� �

k4,

c̄ � h2Wwð3zþ ~zÞk4
þ kmð3zþ ~zÞ þ h2Wkw� mZ2
� �

k2
þ Wkm. ð25Þ

It can be shown that coefficients (25) are positive. Introducing additional notations

ā � 27d̄ā2 þ 2b̄
3
� 9āb̄c̄; b̄ � 3āc̄� b̄

2
,

from characteristic equation (24) the following formulae for free vibration frequencies can be derived:

o�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3āÞ�1 b̄� ð

ffiffiffi
2

3
p
Þ
�1 Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
āþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ā2 � 4b̄

3
q

þ
ffiffiffi
3
p

Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
āþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ā2 � 4b̄

3
q

3

r
3

s0
B@

1
CA

2
64

3
75

vuuuut ,

o�2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3āÞ�1 b̄� ð

ffiffiffi
2

3
p
Þ
�1 Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
āþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ā2 � 4b̄

3
q

3

r 
�

ffiffiffi
3
p

Im

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
āþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ā2 � 4b̄

3
q

3

r !" #vuut ,

oþ3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3āÞ�1ðb̄þ

ffiffiffi
4

3
p

Re

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
āþ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ā2 � 4b̄

3
q

3

r
Þ

s
. ð26Þ

Now, substituting the right-hand sides of Eqs. (23)4,5 into Eqs. (22) two independent linear algebraic
equations for AQ, AS are obtained and then two frequencies are derived:

oþ1 ¼ l�1
ffiffiffiffiffiffiffiffiffiffi
gm�1

p
; oþ2 ¼ h�1

ffiffiffiffiffiffiffiffiffiffi
kw�1

p
. (27)

Thus, in the framework of the tolerance averaging model for the honeycomb lattice-type plate band, free
vibration frequencies defined by Eqs. (26) and (27) are obtained. It should be emphasized that all these
frequencies are the consequence of the application of the simplest model in which the representative element
contains one periodicity cell (cf. Fig. 1) and the form of oscillations of the cell is described by shape parameters
assumed as Eq. (15). More accurate models are based on representative elements including two or several
periodicity cells.

Within the local model, free vibrations of the plate under consideration are described by the equation
obtained from Eq. (20), i.e. by

ð~zþ 3zÞW ;1111 þ m €W ¼ 0,

for which a solution will be assumed as Eq. (23)1. Substituting this solution into the above equation, after
simple transformations, the following formula for free vibration frequency is derived

o ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~zþ 3zÞm�1

q
. (28)

Thus, in the framework of the local model, only one frequency given by Eq. (28) can be analysed.
On the basis of the above results, it can be observed that in the framework of both the models, the tolerance

averaging and the local models, the basic lowest free vibration frequency can be derived (formula (26) or the
simple form (28)). However, higher frequencies related to periodic structure of the honeycomb lattice-type
plate band cannot be obtained using the local model and also the local model cannot describe the length-
scale effects, related to a periodic structure, cf. Ref. [27]. The proposed tolerance averaging model, being a
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non-asymptotic model, makes it possible to analyse higher-order vibrations; at the presented example higher-
order free vibration frequencies oþ1, oþ2 and oþ3 are given by formulae (27) and (26)3, respectively.
5. Calculational results

An application of formulae for free vibration frequencies presented in the previous section will be illustrated
by a calculational example. Let us introduce the following dimensionless parameters:

x � bh�1; d � hs�1; q � kl, (29)

where b is the width of the beam; h is the height of the beam; l is the microstructure length parameter; s is the
length of the beam (cf. Fig. 3); k ¼ 2p/L is the wavenumber. The parameter q is called the dimensionless
wavenumber.

Let us introduce non-dimensional frequency parameters defined for free vibration frequencies obtained
from the tolerance averaging model and of the local model, given by Eqs. (26), (27) and (28), respectively, in
the following form:

O�1 � io�1; O�2 � io�2; Oþ1 � ioþ1; Oþ2 � ioþ2; Oþ3 � ioþ3; O � io, (30)

where i ¼ l(r/E)1/2; r is the mass density of the material of the beam; E is the Young’s modulus.
Calculational results for the non-dimensional frequency parameters (30) are presented as diagrams in

Figs. 4–6. These plots are made for different values of parameters x; d; q; defined by Eqs. (29), and for the
Poisson’s ratio n ¼ 0.3. In Fig. 4a, there are plots of the relations between the first basic (lower) frequencies
O�1, O and the dimensionless wavenumber q (29)3. Diagram of the second basic (lower) frequency as the
relation between O�2 and q and of the higher frequency as the relation between Oþ3 and q are presented in Fig.
4b. The dimensionless wavenumber q is a number belonging to the interval [0, 0.1]. In Fig. 5, the diagrams of
relations between non-dimensional frequency parameters and the dimensionless parameter d (29)1 are shown.
These plots of the first lower frequencies O�1 and O are shown in Fig. 5a; in Fig. 5b—the second lower
frequency O�2 and for the third higher frequency Oþ3; and in Fig. 5c—the first higher frequency Oþ1. In Fig. 6,
diagrams of relations between non-dimensional frequency parameters and the dimensionless parameter x (29)1
are presented. In Fig. 6a, there are shown plots of the first lower frequencies O�1 and O; in Fig. 6b the curves
of the second lower frequency Oþ2 (related to the macrorotations about x2-axis), and of higher frequencies
Oþ2 and Oþ3 (related to the fluctuating parts of rotations about x1- and x2-axis) can be seen; moreover, in
Fig. 6c, there is an enlarged fragment of Fig. 6b.

It has to be observed that using the transformation of frequencies to non-dimensional frequency parameters
(30), the quantity Oþ1 describing the first higher frequency oþ1 is independent of the parameter x ¼ b=h and
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the quantity Oþ2 related to the second higher frequency oþ2 is independent of the parameter d ¼ h/s. Both the
aforesaid parameters are independent of the dimensionless wavenumber q.

Analysing diagrams shown in Figs. 4–6, some comments can be formulated:
1.
 values of the first lower free vibration frequencies calculated within the tolerance averaging model are
smaller than those from the local model (cf. Figs. 4a,5a and 6a), but differences between them are very small
(cf. Fig. 4a), and for parameter x 2 ½1; 1:5�, these values are very close (cf. Fig. 6a);
2.
 higher free vibration frequencies related to the periodic structure of the honeycomb lattice-type plate,
whose plots are shown in Figs. 4b, 5b,c, 6b,c can be obtained only within the tolerance averaging model;
3.
 values of the first higher frequency Oþ1 are bigger than values of the first (basic) lower frequency O�1, but
smaller than the second one O�2, cf. Figs. 5a and b;
4.
 it exists such a value x̂40 that for xox̂, values of the second higher frequency Oþ2 (related to the
fluctuating parts of rotations about x1-axis) are very close to values of the second lower frequency O�2
(related to the macrorotations about x2-axis), and for xXx̂, values of the second higher frequency Oþ2 are
very close to values of the third higher frequency Oþ3 (related to the fluctuating parts of rotations about
x2-axis), cf. Figs. 6b and c.

An example of the general model of periodic lattice-type plates based on the tolerance averaging method
was presented in Ref. [1]; unfortunately diagrams of spectral lines in Fig. 4 in Ref. [1] were made for improper
parameters and hence, values of frequencies obtained in the above-mentioned paper, in particular of the first
higher frequency (denoted by O2 in Ref. [1]), are much bigger than those calculated here. However, the
comments and conclusions in Ref. [1] were correctly stated.
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Fig. 6. Diagrams of relations between non-dimensional frequency parameters and the dimensionless parameter x: (a) for the first lower

frequencies O�1, O; (b) for the second lower frequency O�2 and for higher frequencies Oþ2, Oþ3; and (c) for lower frequency O�2 and for

higher frequencies Oþ2, Oþ3 (zoom of a fragment of Fig. b)); parameters x; d; q; are defined by Eq. (30); lines: 1—(q,d) ¼ (0.05,0.05), 2—

(q,d) ¼ (0.1,0.05), 3—(q,d) ¼ (0.1,0.1), 4—(q,d) ¼ (0.05,0.1).

I. Cielecka, J. Jędrysiak / Journal of Sound and Vibration 296 (2006) 130–149144
6. Physical correctness of the tolerance averaging model

The length-size effect related to the periodic structure of the honeycomb lattice-type plate is manifested first of
all in additional higher-order frequencies obtained in the framework of the tolerance averaging model. Thus, in
order to justify the proposed model a travelling wave along the x-axis through an unbounded lattice-type plate
with honeycomb structure subject the cylindrical bending will be analysed. This problem will be investigated in the
framework of the new tolerance averaging model, of the local model and of the discrete model. The x-axis will be
parallel to an arbitrary but fixed family of beams of the lattice-type plate under consideration.
6.1. Travelling wave by the tolerance averaging and the local model

All material and geometrical properties are assumed as in Section 3. Hence, within the tolerance averaging
model, a travelling wave of this unbounded plate can be analysed using Eqs. (21) and (22). In these equations,
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let us neglect the rotational inertia terms, i.e. terms with coefficient w, defined by Eq. (16)8. Thus, the following
differential equations are obtained:

WW ;11 � m €W þ WF;1 ¼ 0; �WW ;1 þ ð
~zþ 3z� l2Z2k�1ÞF;11 � WF ¼ 0; l2m €Qþ gQ ¼ 0

Assuming solutions to the above equations in the form

W ðx; tÞ ¼ AW exp iðkx� otÞ; Fðx; tÞ ¼ AF exp iðkx� otÞ; Qðx; tÞ ¼ AQ exp iðkx� otÞ,

where AW, AF, AQ are amplitudes, o is a frequency and k ¼ 2p/L is the wavenumber, after some
transformations, in the framework of the tolerance averaging model, we arrive at formulae of a lower o� and a

higher frequency o+ for the plate under consideration

o� ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~zþ 3z� l2Z2k�1

m½ð~zþ 3z� l2Z2k�1ÞW�1k2
þ 1�

s
; oþ ¼ l�1

ffiffiffiffiffiffiffiffiffiffi
gm�1

p
. (31)

The lower frequency o� corresponds to the first basic (lower) frequency o�1 given by Eq. (26)1 and the
higher frequency o+ is identical with the first higher frequency oþ1 (27)1. The similar procedure within the

local model leads to the only one frequency o, which is described by the formula identical with Eq. (28).

6.2. Travelling wave by the ‘‘exact’’ discrete model

The above problem of a travelling wave of the lattice-type plate with the honeycomb structure can be also
considered within the ‘‘exact’’ discrete model, which is similar to the one proposed and applied by Brillouin in
Ref. [2] to analyse longitudinal vibrations of the one-dimensional diatomic structure. In the aforementioned
paper, solutions for that model are treated as the ‘‘exact’’ solutions for the structure under consideration. Let
us consider cells being repeated elements of the honeycomb lattice-type plate, which are numbered m�1, m,
m+1. The length of repeated elements measured along the x-axis is equal to lo ¼ 3s/2.

Denoting by wj a

m ;j
j a

m and wj b

m ;j
j b

m deflections and rotations of joints j a and j b at the cell m, respectively, and
using the known formulae of structural mechanics for transversal forces, bending and torsion moments in each
one of three beams constituted the cell m, the equations of motion can be written for both the joints j a, j b

belonging to the cell m. These equations involve unknown deflections wj a

m ;w
j b

m and rotations j j a

m ;j
j b

m of joints
j a, j b belonging to the cell m and also deflections and rotations of joints j b and j a belonging to the cell
m�1 and to the cell m+1, respectively, i.e. w

j b

m�1;j
j b

m�1 and w
j a

mþ1;j
j a

mþ1. Afterwards, the known procedure of
investigations leads to the characteristic equation, which can be written in the form

�al6o$
4 � �bl3o$

2 þ �d ¼ 0, (32)

where coefficients are defined by

�a � 2
243M

2 31þ 21GIo

EI
þ 2 3GIo

EI
� 2

� �
cosðkloÞ

� �
; �b � 2MEI 19þ 18GIo

EI
þ 8þ 9GIo

EI

� �
cosðkloÞ

� �
,

�d � 27ðEIÞ2 1þ 3GIo

EI

� �
3þ cosð2kloÞ � 4 cosðkloÞ½ �.

Solutions to Eq. (32) being the ‘‘exact’’ formulae of frequencies for the travelling wave in the framework of
the discrete model have the following forms:

$� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b
2
� 4�a�d

q� 	
2�al3o
� ��1s

; $þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b
2
� 4�a�d

q� 	
2�al3o
� ��1s

, (33)

where $� and $+ are lower and higher frequencies, respectively. The above model takes into account the
inertia forces related to concentrated masses M at all joints.

6.3. Calculational results and remarks

Using formulae similar to Eqs. (30), non-dimensional frequency parameters, describing frequencies for the
travelling wave (given by Eqs. (31), (28), (33)), can be assumed and denoted for the tolerance averaging model
by O�, O+, for the local model by O and for the discrete model byY�,Y+. In Fig. 7, plots of these parameters
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versus the dimensionless wavenumber qo � klo, qo 2 ½�p; p� are shown (the modes of vibrations are
constructed from two waves propagating in opposite directions; thus, one wave has positive wavenumbers, but
the other has negative ones). These diagrams are made for the parameters d ¼ h/s ¼ 0.1, x ¼ b=h ¼ 0:8 (h is
the height of beams, b is the width of beams, s is the span of beams) and the Poisson’s ratio n ¼ 0.3. From
results shown in Fig. 7, it can be observed that
1.
 lower frequencies of the travelling wave obtained within both the tolerance averaging and the local models
are very close frequencies calculated from the discrete model within a wide scope of the dimensionless
wavenumber qo, qoA[�0.4p, 0.4p]; and
2.
 differences between higher frequencies for long wave propagation problems, qoA[�0.1p, 0.1p], obtained
within the discrete model and the tolerance averaging model are very small.

7. Conclusions

In this paper, the new averaged continuum model of periodic lattice-type plates for the analysis of dynamic
problems is presented. The model makes it possible to investigate the effect of the cell length size on the overall
dynamic behaviour of these plates. The proposed model is based on the tolerance averaging (summarized for
periodic composites in Ref. [27]) and hence is called the tolerance averaging model. The effect of the cell length
size is manifested e.g. by higher-order vibrations. Using the new model, higher free vibration frequencies can
be investigated, which are related to a periodic plate structure. This problem has been shown here at the
example of honeycomb lattice-type plates. Below, the general conclusions are formulated.
1.
 The governing equations of the tolerance averaging model describe the effect of the cell length size, because
these involve the microstructure length parameter l.
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2.
 It should be emphasized that for lattice-type plates with the honeycomb structure, the governing equations
of the tolerance averaging model have the form similar to equations for isotropic cases, i.e. all coefficients
of these equations are isotropic, cf. Ref. [21].
3.
 Contrary to the local (homogenized) model, using the new model, it is possible to analyse the effects of the
cell size (in the meaning related to a periodic plate structure, cf. Ref. [27]) and calculate higher free vibration
frequencies in lattice-type plates with the honeycomb structure.
4.
 The tolerance averaging model can be formulated on different levels of accuracy, cf. Ref. [27]; on every
level, the systems of real numbers haa, gaa (a ¼ 1,y,n; a ¼ 1,y,n�1) have to be assumed a priori as a
description of the class of motions in the periodicity cell D being investigated. The simplest model is based
on the smallest repeated cell and has a minimum number of internal kinematic variables. In order to
analyse higher-order motions, e.g. higher-order frequencies, we have to assume that the basic cell is
composed of two or more repeated elements, hence, a model may involve even a large number of kinematic
internal variables, cf. Refs. [21,27].
5.
 The tolerance averaging model yields the a posteriori applicability conditions for solutions to the model
equations, i.e. all unknown functions (a macrodeflection, macrorotations and internal variables) are
assumed to be slowly varying functions, cf. Eq. (13). Thus, the model is mainly limited to the analysis of
long wave propagation problems (i.e. problems, in which the wavelength is large in comparison with the
microstructure length parameter l), cf. Refs. [21,27].
6.
 The benchmark problem shown in Section 6 stands a certain justification of the tolerance averaging model.
Obtained results within the new model constitute an approximation of exact solutions calculated using the
known discrete model. Hence, the new model has defined physical meaning for long wave propagation
problems properly.
7.
 From the aforementioned example, it is visible that the tolerance averaging model allows to obtain certain
limits for frequencies, which can appear in considered periodic lattice-type plates, i.e. the inferior limit of
lower frequencies and the superior limit of higher frequencies for long waves, qoA[�0.1p, 0.1p], cf. Fig. 7.

Appendix A. The integral form of Hamiltonian for lattice-type periodic plates

Introduce the notations

A � Dj j�1
XN

A¼1

~L
A
tA � tA; Aab � Dj j�1

XN

A¼1

ðlA
Þ
2 ~L

A
h̄

Aa
h̄

Ab
,

C � Dj j�1
XN

A¼1

ðsAÞ
2
½KAðnA � nA � tA � tAÞ þ ~K

A
ðtA � tA � tA � tAÞ�,

Aab
� Dj j�1

XN

A¼1

½ ~L
A
ḡAa � ðnA � nAÞ � ḡAb þ KAĝ

Aa
� ðnA � nAÞ � ĝ

Ab
þ ~K

A
ĝ

Aa
� ðtA � tAÞ � ĝ

Ab
�,

Ba � Dj j�1
XN

A¼1

ðlA
Þ
�1
½KAðnA � nA � tAÞ � ĝ

Aa
þ ~K

A
ðtA � tA � tAÞ � ĝ

Aa
�,

Da � Dj j�1
XN

A¼1

lA ~L
A

h̄
Aa
tA; D̂

a
� Dj j�1

XN

A¼1

~L
A
ðtA � nAÞ � ḡAa;

Dab � Dj j�1
XN

A¼1

lA ~L
A

h̄
Aa
nA � ḡAb,

m � Dj j�1
Xn

a¼1

Ma; mab � Dj j�1
Xn

a¼1

Mahaahab,

v � h�2 Dj j�1
Xn

a¼1

Ja; vab � h�2 Dj j�1
Xn

a¼1

gaa � Ja � gab, ðA:1Þ
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where h stands for the mean height of beams in the direction normal to 0x1x2-plane. After substituting to
Eq. (6), the right-hand sides of formulae (10) and (11) and taking into account the tolerance averaging
approximations (cf. Section 2.3, p. 3), as well as the conditions (9) and the notations (A.1), we arrive at the
integral form of Hamiltonian Ā ¼ Ē� K̄� W̄, where

Ē ¼

Z
X
ð1
2
W � A �Wþ 1

2
rU : C : rUþ 1

2
AabQaQb þ 1

2
l2Ra � Aab

� Rb

þ l2Ra � ðBa : rUÞ þDa �WQa þ lW �Da � Ra þ lDab � RbQaÞdx;

K̄ ¼
1

2

Z
X
ðm _W _W þ l2mab _Q

a _Q
b
þ h2 _U � v � _Uþ h2l2 _R

a
� vab � _R

b
Þdx;

W̄ ¼

Z
X
ðfW þ lf aQa þ hm �Uþ hlma � RaÞdx: ðA:2Þ

It is visible that the Hamiltonian does not involve spatial derivatives of extra kinematic unknowns Qa, Ra

describing displacement fluctuations in the periodicity cell.

Appendix B. Passage from the tolerance averaging to the local model

The continuum model called the local model will be derived from Eqs. (19) by the asymptotic procedure in
which the microstructure length parameter l is scaled down. At the same time, it is assumed that the length
parameter h (being the mean height of beams) tends towards zero much faster than the parameter l, i.e.,
h ¼ o(l).

Taking into account definitions (A.1), it is visible that all coefficients but C will be constant under the above
re-scaling. Neglecting the terms involving h and setting l! 0 in governing equations (19)1,2,3, we arrive at the
following equations:

Wðr � rÞW � m €W þ We : ðr �UÞ þ f ¼ 0,

We : ðrW þ e : UÞ þ 2ð~z� zÞrðr �UÞ þ ð~zþ 3zÞðr � rÞU ¼ 0 ðB:1Þ

and Q ¼ 0.
According to denotations (16), the coefficients z; ~z are of an order of l2 and hence can be written in the form

z ¼ l2ẑ; ~z ¼ l2z̄. The coefficients ẑ; z̄ are constant under the limit passage l-0. Hence Eq. (B.1)2 yields

We : ðrW þ e : UÞ þ l2½2ðz̄� ẑÞrðr �UÞ þ ðz̄þ 3ẑÞðr � rÞU� ¼ 0. (B.2)

Under limit passage l! 0, we obtain

rW þ e : U ¼ 0. (B.3)

Hence, we have

U ¼ �e : ðrW Þ. (B.4)

Substituting to (B.1)1 the right-hand side of (B.4), we obtain finally Eq. (20)

ð~zþ 3zÞðr � rÞ : ðr � rÞW þ m €W � f ¼ 0. (B.5)

The obtained Eq. (B.5) represents an asymptotic model of the periodic lattice-type plate under
consideration, which can be called the local model. The only unknown in this model is a deflection W,
which has to be a slowly varying function for every t in the region X of 0x1x2.

Limiting considerations to free vibrations in the cylindrical bending case along x ¼ x1 axis Eq. (B.5) takes
the form

ð~zþ 3zÞW ;1111 þ m €W ¼ 0. (B.6)

For a plate in the cylindrical bending, simply supported on the edges x ¼ 0, x ¼ L, the solution is assumed
in the form (23)1, i.e. W ðx; tÞ ¼ AW sin kx cos ot. Substituting this solution to (B.6), we obtain the
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characteristic equation of the local model

ð~zþ 3zÞk4
� m o2 ¼ 0. (B.7)

Solution to Eq. (B.7) takes the form (28):

o ¼ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð~zþ 3zÞm�1

q
.

Thus, in the framework of the local model only one frequency can be analysed.
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